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T W  0- DIMENSIONAL , LIFTING WINGS 

OF MINIMUM DRAG IN HYPERSONIC FLOW 

--_____ -__~. - 

(" ) 
_I___ _ _  __ 

by 

DAVID G. HULL ("") 

SUMMARY -- _ _ _  

The problem of minimizing the drag of a slender, flat-top, two-dimensional, 

lifting wing in hypersonic flow is considered under the assumptions that the pressure 

coefficient is Newtonian and the skin-friction coefficient is constant. The indirect 

methods of the calculus of variations a r e  employed,and the necessary conditions to  be 

satisfied by an  optimum airfoil are derived fo r  conditions imposed on the lift, the 

pitching moment, the profile area, the chord length, and the thickness. Then, the 

following particular cases are analyzed: (a) g v e n  lift, (b) given lift and chord length, 
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Aeronautics and Space Administration under Grant No. NGR-44-006-045. 

(::: >:: ) 
Research Associate in Astronautics , Department of Mechanical and Aerospace 

Engineering and Materials Science, R c e  University, Houston, Texas. 
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(c )  given lift and thickness, (d) given lift and profile area, and (e) given lift, pitching I 
moment, and chord length. In all of these cases ,  analytical expressions are presented 

for the geometry of the optimum airfoil and the aerodynamic drag. 
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1. INTRODUCTION 

In Refs.  1 through 5, the minimization of the drag of a two-dimensional wing in 

Newtonian flow was considered under the assumptions that the airfoil is symmetr ic  

and the angle of attack is zero,  so  that the lift is ze ro .  Since the operational qualities 

of a hypersonic vehicle depend t o  a large extent on its lifting characterist ics,  the more  

important problem of minimizing the drag of a lifting wing is investigated here .  

One way t o  approach this problem is to  place a symmetric airfoil at an angle of 

attack. Another way is to  study airfoils such that the upper and lower surfaces  are 

asymmetr ic .  The latter approach is used here,  with the further assumption that every 

element of the upper surface is parallel to  the undisturbed flow direction and every 

element of the lower surface "sees " the flow. For  these flat-top wings, the variational 

problem consists of determining the lower surface so as to minimize the drag  fo r  

various conditions imposed on tile lift, the pitching moment, the profile area, the chord 

length, and the thickness. The complete l is t  of hypotheses is as follows: (a) the wing 

is two-dimensional; (b) the upper surface is flat and parallel  t o  the undisturbed flow 
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direction; (c) the wing is slender in the chordwise sense; (d) the pressure  coefficient 

is Newtonian; (e) the skin-friction coefficient is constant; and (f) the effect of the 

tangential forces on the lift and the pitching moment is neglected. 

AAR- 24 - 1  
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2 .  AERODYNAMIC AND GEOMETRIC QUANTITIES - 

In order  to re la te  the aerodynamic and geometric quantities of a two-dimensional, 

flat-top wing t o  its geometry, the following Cartesian coordinate system 0x2 is intro- 

duced: the origin 0 is the leading edge; the x-axis is in the direction of the undisturbed 

flow; and the z-axis is normal to the x-axis and positive downward (Fig. 1). 

If hypotheses (a) through (f) a r e  considered and if the lower surface is represented 

by the relationship z = z(x), the drag  p e r  unit  span D, the lift per  unit span L, the 

pitching moment pe r  unit span M, and the profile a r e a  A are given by (Ref. 6) 

D / 2 q = j  Pf (2 3 + C f ) d x  

xi 

L/2q = J"' i2 dx 
xi 

M,2q = Cf x 2 dx 
i 

* = J X f z d x  
X -  1 

where q is the free-s t ream dynamic pressure, 2 the derivative dz/dx, and C is the f 
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constant skin-friction coefficient. The end coordinates are represented by the relations ‘ I  

Y z = o  i 
x = o  
i 

9 z = t  f 
x = c  

f 

.I 
I 
I 

where the chord length c and the trail ing edge thickness t can  either be arbi t rar i ly  

prescribed o r  free. 

Other aerodynamic and geometric quantities of interest  are the lift-to-drag 

ratio E = L/D, the position of the center of pressure  x = M/L, and the thickness 
0 

ratio T = t /c .  
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3 .  MINIMAL PROBLEM 
______IC-- 

The problem of minimizing the drag for a rb i t ra ry  values imposed on the lift, the 

pitching moment, the profile a rea ,  the chord length, and the thickness is now formulated 

as follows: "In the c lass  of functions z(x) which satisfy the integral constraints (1-2) 

through (1-4) and the prescribed boundary conditions, find that particular function which 

minimizes the integral (1- 1). ' I  According to standard variational procedures (see, 

for  instance, Chapter 1 of Ref. 7), this problem is equivalent t o  that of minimizing 

the functional 

I = J"' F(x, z, 2, XI, X2, X3) dx 
xi 

subject to the constraints (1-2) through (1-4) and the prescribed boundary conditions with 

the understanding that the fundamental function F is defined as 

3 2 2 F = i  + C  + X i  + A x 2  +Xz 
f 1  2 3 

X denote constant Lagrange multipliers. 1' l2 '  3 where X 

(4) 
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4 .  --- NECESSARY CONDITIONS -- 

The function z(x) which extremizes the functional ( 3 )  must be a solution of the 

Euler equation 

dF. /dx-  F = O  
Z Z 

Its explicit form 

d 2  
dx 2 3 
- (32 + 2x12 + 2x xi) - x = 0 

admits the f i r s t  integral 

2 32 +2x i + 2 x  x i - x  x = c  
1 2 3 

derive it when analyzing particular cases .  

The general solution of the Euler equation involves two integration constants 

whose values are determined by applying the prescribed boundary conditions and the 

r - I f  

i Z z J i -  ( F - ~ F . ) G x + F . ~ z '  - 0  

(7) 

where C is a constant. While a second integral can be obtained, it is more  convenient to 

natural boundary conditions. The la t ter  are obtained from the transversality condition 
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which must be satisfied for  every system of variations consistent with the prescribed 

boundary conditions. The explicit form of Eq. (8) is the following: 

f 

f 1  2 3 2 i 

3 .2 .2 
[(-2i  + c - h z - x xz + x 2) 6x + (3i2+ 21,i +2x x i ) 6 z ]  = O  

where 6x. = 6z. = 0, owing to  Eqs. (2-1). As a consequence, the natural boundary 
1 1 

conditions are given by 

.2 (-2i3 + c  - h l i2  - x xz + A  z) = o  
f 2 3 f  

if the chord length is f ree  and 

.2 (32 +2x i + 2 x  x;) = o  
1 2 f  

M R -  24 

i f  the  thickness is free.  

Once the solution of the Euler equation is obtained, it is necessary to verify that 

it actually minimizes the functional ( 3 ) .  In this connection, the Legendre necessary 

condition 

F.. 2 0 
zz 

must be satisfied and is equivalent t o  

3 i - t - x  + a  x.0 
1 2  



5 .  NONDIMENSIONAL VARIABLES -- 

In the following sections, several  particular cases are analyzed with the aid of 

the previous necessary conditions. Since the main purpose of a wing is to generate 

enough lift to  maintain a vehicle in flight, the lift is prescribed in  every case.  In order  

to  present the results in  the most compact way, it is convenient to introduce the non- 

dimensional coordinates 

10 AAR- 24  'I 
' I  
I 
1 
1 
1 
1 

4 = x / c  ? 5 = z/t (14) 1 
and the nondimensional variables 

1/3 
f 

E, = E C  

Eo = xo/c 

C,% = c(q/L) Cf 

t, = t,(q/L) Cf 

A, =A(q/L) Cf 

7, = l-c* 

2 /3 

1 /3 

2 

- 1/3 

Incidentally, the quantity E, is inversely proportional to the d rag  and, fo r tha t  matter,  

is a maximum when the drag is a minimum. 

1 
I 
1 
I 

I 
I 
I 
1 
1 
I 

(15) 
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6 .  GIVENLIFT -- I ’  
If the lift is prescribed while the pitching moment and the profile area are free I 

I 
I 

(A = X 
2 3  

= 0), the first integral (7) reduces to 

.2 32 4 2 h  i = c  1 

and implies that 

i = Const = 7 

Hence, the optimum two-dimensional wing is the wedge 

c = 4  (18) 

The evaluation of the drag integral (1-1) and the lift integral (1-2) yields the relationships 

(19 1 
2 L = 2qcT 

3 D =  2qc(7 + C f )  , 

which imply that 

Since the chord and the thickness are free,  the natural boundary conditions (10) 

and (11) hold and, because of Eq. (17), can be rewritten as 

2 2 2T3 - c +A ‘r = O  , 37 +2i1T = O  f 1  
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Upon eliminating the multiplier rL f rom these equations, we see that the optimum 1 

thickness ratio is given by 

AAR- 24 -. I 

I and is such that the friction drag  is one-third of the total drag.  The associated thickness 

and chord a r e  given by 

3 -  t >:: = 1/ 3 % ~  0 .397  , e ,  = 1/ ,/32 0.315 

Finally, the lift-to-drag ratio (20) becomes 

3-  E, = ,/4 /3 1 0.529 

I 
( 2 3 )  

Equation (24) represents the highest possible value of the lift-to-drag rat io  which can 

be obtained with a flat-top wing (Refs. 6 and 8). Should the wing be required to  satisfy 

a certain number of geometric and/or aerodynamic constraints, a decrease in  the 

l if t- to-drag ratio would occur with respect to  that predicted by Eq. (24). 
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7 .  GIVEN LIFT AND CHORD -- 

If the lift and the chord length are  prescribed while the pitching moment and the 

profile area are free, Eqs . (16) through (20) are still valid. The optimum thickness 

ra t io  is obtained from the relationship (19-2) as  follows: 

Thus, the lift-to-drag rat io  (20) becomes (Fig. 2) 

and achieves the maximum value (24) for the value of c,, defined by Eq. (23-2). 

AAR- 24 
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8 .  GIVEN LIFT AND THICKNESS 

I€ the lift and the thickness are prescribed while the pitching moment and the 

profile area are free, Eqs . (16) through (20) are still valid. The optimum thickness 

ratio is obtained froin the relationship (19-2) as follows: 

7, = 1/2t, 

Thus, the lift-to-drag ratio (20) becomes (Fig. 3) 

and achieves the maximum value (24) f o r  the value o f t ,  defined by Eq. (23-1). 

AAR- 24 - I  
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I '  9 .  GIVEN LIFT AND PROFILE AREA -- ---____ 

I 
1 

If the llft and the profile a rea  are  prescribed while the pitching moment is f ree  

(A2 = 0), the f i rs t  integral (7) reduces to 

.2  32 3-21 i - 1 x = C  
1 3 

I 
1 
8 
I 
8 
I 
I 
I 
I 
I 
I 
I 
I 
D 
I 

which, when applied at the trail ing edge and combined with the natural boundary con- 

dition (1 l), supplies the relation 

C = - h  c 3 

At the same time, the natural boundary condition (11) implies that two classes  of 

solutions exist 

Class I 2 = -  2h1/3 f 

Class I1 

AAR- 24 

i = o  
f 

For  the former,  the Legendre condition requires that X 0, while for  the la t ter ,  it 1 

requires that X 2 0. 
1 

The quadratic equation (29) is solved by 

2 11/2 i = (1/3) {- AI + [ A l  - 3X3 (c - x)_I } 
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where the plus sign is chosen so that the Legendre condition is satisfied. Integrating - 1  
this differential equation subject to the initial conditions (2- 1), one obtains the relation 

z = - (h1/3)x - (2/27X3){ [A: - ~ X , C ] ” ~  - r h 2  L 1  - 31 3 (C - 

which, applied at the trail ing edge, implies that the thickness is given by 

t = - (k1/3)c - (2/27h3)  { [A: - 31 c]3/2 f A:} 
3 

(33 )  

(34) 

where the upper sign is valid for  solutions of Class I and the lower sign, f o r  solutions 

of Class 11. At this point, we define the quantity 

( 3 5 )  
2 
1 a = 3x3c/z, 

so that Eqs . ( 3 3 )  and (34) can be rewritten as 

3 
z = - ( A 1  /m3) G(< ,a) 

(37) 
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and imply that 

The next s tep  is to relate t h e  quantity a t o  the prescribed values of the lift and 

the profile a r e a .  In this connection, the combined use  of the natural boundary condition 

(lo), Eqs . (31), and Eq. (37-2) leads to the  relationship 

(39) 
- 1/3 

T:g = [G(l,a)/3a] [4(2 - n) - G(l, a)] 

where n = 1 for solutions of Class I and n = 2 for  solutions of Class 11. Furthermore, 

substituting the shape equation (38) into the lift constraint (1-2) and the profile a r e a  

constraint (1-4) and accounting for  Eq. (39), one obtains the relations 

213 
- 3rx[4(2 - n) - G(1ja)I 

2 3/2 - 11 
c,: - -- 

12a - 3 a  F8[(1 - a) 

where 

Class I 

Class I1 
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* I  The associated lift-to-drag ratio is given by 

I The final step consists of eliminating the quantity a from Eqs . (38) through (42). 

If this is done, one obtains the parametr ic  functional relationships 

5 = fl(O,A,) 

and 

which are plotted in Figs. 4 through 7. Incidentally, the lift-to-drag rat io  (44-3) 

achieves the maximum value (24) for A, = 1/16. 

I 
I 
I 

(44) I 
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(43) 
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GIVEN LIFT PITCHING MOMENT, AND CHORD 10. -_-I- L----- 

If the lift and the pitching moment are prescribed while the profile area is f ree  

(A3 = 0), the first integral (7) reduces to 

i (32 + 2x1 + 2x x) = c 2 

with C = 0, owing to the natural boundary condition (11). The integration of this 

equation subject to  the initial conditions (2-1) yields the relationship 

which, at the trailing edge, becomes 

t = - (2h1/3)c - (A2/3)c 2 

In these relations, the Legendre condition requires that X 2 0. At this point, we 1 

define the quantity 

B = h2C/hl 

AAR- 24 

(45) 

(47) 

(48) 

and rewrite the previous equations as 

(49) 

t = - (ch1/3) (2 + 8) 
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with the implication that 

The next step is t o  relate the quantity P t o  the prescribed values of the lift and 

the pitching moment. In this connection, if the shape equation (50) is substituted into 

the lift constraint (1-2) and the moment constraint (1-3), one o h a i m  the relations 

where 

The associated lift-to-drag ratio is given by 

where 

-3/2 H(B) = (3/4),,/7 (B3 + 4R2 + 68 + 4) (B2 + 3 8  + 3) 

(53 ) 

(54 ) 
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The final s tep consists of eliminating the quantity B from Eqs . (50) through (53). 

If this is done, one obtains the parametric functional relationships 

and 

which are plotted i n  Figs. 8 through 10. Incidentally, the lift-to-drag ratio (56) 

achieves the absolute maximum value (24) when 

-5/3 e = 1/2 , C,% = 2 
0 

(55) 

(57) 

In closing, it is emphasized that the present solutions are valid only if  the prescribed 

center of pressure  lies between 25% and 75% of the chord length. The remaining solutions 

can be obtained by combining the regular shape (50) with zero-slope shapes; however, 

these solutions are not derived here  since the range of 4 covered in  Figs. 8 through 10 
0 

is sufficient for most practical applications. 
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Fig. 10. Maximum lift-to-drag ratio. 
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